Simple axiomatization of reticulations on residuated lattices
نویسنده
چکیده مقاله:
We give a simple and independent axiomatization of reticulations on residuated lattices, which were axiomatized by five conditions in [C. Mureşan, The reticulation of a residuated lattice, Bull. Math. Soc. Sci. Math. Roumanie 51 (2008), no. 1, 47--65]. Moreover, we show that reticulations can be considered as lattice homomorphisms between residuated lattices and bounded distributive lattices. Consequently, the result proved by Muresan in 2008, for any two reticulattions $(L_1, lambda_1), (L_2, lambda_2)$ of a residuated lattice $X$ there exists an isomorphism $f: L_1 to L_2$ such that $fcirc lambda_1 = lambda_2$, can be considered as a homomorphism theorem.
منابع مشابه
Independent definition of reticulations on residuated lattices
A notion of reticulation which provides topological properties on algebras has introduced on commutative rings in 1980 by Simmons in [5]. For a given commutative ring A, a pair (L, λ) of a bounded distributive lattice and a mapping λ : A → L satisfying some conditions is called a reticulation on A, and the map λ gives a homeomorphism between the topological space Spec(A) consisting of prime fil...
متن کاملAxiomatization of Fuzzy Attribute Logic over Complete Residuated Lattices
The paper deals with fuzzy attribute logic (FAL) and shows its completeness over all complete residuated lattices. FAL is a calculus for reasoning with if-then rules describing particular attribute dependencies in objectattribute data. Completeness is proved in two versions: classical-style completeness and graded-style completeness.
متن کاملTriangle Algebras: Towards an Axiomatization of Interval-Valued Residuated Lattices
In this paper, we present triangle algebras: residuated lattices equipped with two modal, or approximation, operators and with a third angular point u, different from 0 (false) and 1 (true), intuitively denoting ignorance about a formula’s truth value. We prove that these constructs, which bear a close relationship to several other algebraic structures including rough approximation spaces, prov...
متن کاملTopological Residuated Lattices
In this paper, we study the separtion axioms $T_0,T_1,T_2$ and $T_{5/2}$ on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number $alpha$, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality $alpha$. In the follows, we obtain some ...
متن کاملDIRECTLY INDECOMPOSABLE RESIDUATED LATTICES
The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 43 شماره 3
صفحات 943- 949
تاریخ انتشار 2017-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023